目录

二进制编码

二进制转十进制

除2取余

十进制转二进制

乘2次幂

小数进制转换

e.g.

3.59375

整数部分3的二进制位11

小数部分0.59375

0.59375*2=1.1875 ———————— 1

0.1875*2=0.375 —————————0

0.375*2=0.75 ——————————0

0.75*2=1.5 ——————————–1

0.5*2=1 ———————————–1

二进制位0.10011

所以3.59375的二进制表示为11.10011

有些小数不能测出现循环

IEEE754标准的浮点数与十进制数的转换

32位和64位标准 https://img-blog.csdnimg.cn/20200315221429488.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70

https://img-blog.csdnimg.cn/20200315221559398.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70 通过全1和全0来划定它的表示范围

E.G. https://img-blog.csdnimg.cn/20200315221751406.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70 https://img-blog.csdnimg.cn/20200315222313356.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70

原码

即正常的二进制码(带符号位)

https://img-blog.csdnimg.cn/20200315225331111.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70 https://img-blog.csdnimg.cn/20200315222526393.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70

补码

正数(包括+0)的补码和原码一样

负数(包括-0)的补码在原码的基础上“按位取反,末尾加1”

https://img-blog.csdnimg.cn/20200315225539372.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70

补码转原码的一种方法

https://img-blog.csdnimg.cn/20200315230724458.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70

https://img-blog.csdnimg.cn/20200315230844234.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70 还可以用逆过程法,即减1取反

反码

正数(包括+0)的补码和原码一样

负数(包括-0)的补码在原码的基础上“按位取反”

https://img-blog.csdnimg.cn/20200315225859664.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70

补码的加法运算

https://img-blog.csdnimg.cn/20200315231856790.PNG https://img-blog.csdnimg.cn/20200315232256390.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70

补码的减法运算

https://img-blog.csdnimg.cn/20200315232559834.PNG https://img-blog.csdnimg.cn/20200315232635141.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNzM3Njk3,size_16,color_FFFFFF,t_70